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Two exact lattice propagators
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Exact Schrédinger and heat propagators are given for a particle hopping on a one-dimensional rec-
tangular lattice, assuming a uniform field V,, =An and a 5-function potential V,, =A8,,. In its quantum
form, the uniform-field propagator is the general solution of the Wannier-Stark problem for a discrete
lattice, describing a particle moving in the superposition of a homogeneous field and a discrete periodic
potential created by the lattice. A disentangled form for the uniform-field propagator is obtained by us-
ing the transformation properties of the Hamiltonian under the Lie algebra iso(1,1). Using this result, it
is shown that the expected position and spatial extension of a lattice wave packet oscillate in phase with
equal amplitudes. The discrete §-function heat propagator is related by a Lyapunov transformation to
the solution of the lattice Smoluchowski equation for the cusp potential ¥, «<|n|. It is shown that the
implied discrete-time Smoluchowski evolution operator generates a Markov process in which a pair of
nonsymmetric random walks on the right and left half-axes are coupled at cell O by a partly reflecting,
partly transmitting, sticky barrier. The interaction term in the lattice 8-function heat propagator is a
Poisson weighted superposition of nonsymmetric random walks.
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I. INTRODUCTION

There are few known exact time-dependent propaga-
tors for quantum or classical particles ‘“hopping” on
discrete lattices [1]. Such processes play important quan-
tum roles in exciton and semiconductor physics [2].
Classical analogs of these quantum hopping processes
have recently been found in hard core lattice diffusion as
well as random adsorption and desorption [3]. There are
also related applications to quantum spin chains [4],
reaction-diffusion systems [5], and diffusion in the pres-
ence of partial traps [6]. Here, I add to the inventory of
exact time-dependent solutions for hopping processes
with a pair of one-dimensional propagators that satisfy
the lattice Schrodinger equation

K(H=(Q—I—V)K(2) .
In (1.1), I is the identity matrix;

(1.1)
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is the generator of a discrete-time, symmetric random
walk on a doubly infinite lattice; and V=AT represents a
local time-dependent lattice field with coupling strength
A and diagonal interaction matrix T. Unless otherwise
stated, the matrices (Q,I,V) are taken to be doubly
infinite throughout the discussion.

For the nonsingular lattice potentials considered here,
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K(?) is an entire function of complex ¢. With this simple
analytic structure, time ¢ is only a place holder in an alge-
braic expression for exp[(Q—I—V)¢]. Given the proper
probability interpretation, the propagators derived here
therefore describe both classical and quantum systems
without any analytic continuation complications.

The technical objective is to disentangle the noncom-
muting operators (Q, V) in the formal expression for the
propagator K(¢)=exp[(Q—I—V)t]. The disentangling
operation is nontrivial for lattice calculations because one
must take full account of the underlying periodic struc-
ture. From an algebraic point of view, one is required to
treat the complete Baker-Hausdorff expansions,
exp[ —Vt]1Qexp[Vt], ..., implicit in K(¢). This is done
here by using an underlying Lie symmetry to factorize
the propagator and by summing the complete perturba-
tion series for the energy Green’s function. The first
method is used in Sec. II to obtain the lattice propagator
for the uniform field. It is shown that this propagator
solves the one-band approximation for the d=1
(Wannier-Stark) problem of a particle moving in a
periodic potential with a superimposed homogeneous
external field. Exact expressions for the first and second
moments of a lattice wave packet are obtained. The wave
packet behaves as a “breather”; its expected position and
the variance of the associated probability distribution os-
cillate in phase with equal amplitudes.

The perturbation theoretic approach is used in Sec. III
to solve for the 8-function lattice propagator Kg(¢). In
heat propagator form, Kg(¢) is related by a Lyapunov
transformation e ' ¥ K(2) to the solution of the lattice
Smoluchowski equation with the classical potential
VF..,. =A|n|. The same correspondence between the quan-

tum S-function field and classical cusp potential occurs
on the continuum [7]. In the discrete-time version of the
lattice Smoluchowski picture, the attractive quantum &-

2208 ©1995 The American Physical Society



52 TWO EXACT LATTICE PROPAGATORS

function field maps to a Markov process in which a parti-
cle carries out a nonsymmetric random walk biased to-
ward the force center at cell 0. On reaching cell O, there
are equal probabilities p of hopping right or left and
probability 1 —2p of remaining in place. The interaction
term in the &-function heat propagator reflects this Mar-
kov structure. In the repulsive case, the interaction term
can be represented as a Poisson weighted superposition of
nonsymmetric random walks. To check that the discreti-
zation used here gives rise to a physically consistent
theory, it is shown that the propagators under study
properly reduce to the known continuum forms. The in-
terplay exhibited here among an underlying Lie symme-
try, a Poisson point process, and a random walk is ex-
pected on general grounds [8].

Notation and tools. In the argument to follow, use is
made of the known lattice propagators that describe the
symmetric random walk

Kij(t)=(e‘Q_l)‘)kj=e”'Ik-j(t) (1.3a)
and the free quantum lattice particle
Ko =(—it)y=e'e!™ =D _ (1) . (1.3b)

In (1.3), J,(¢) is the ordinary Bessel function and I,,(¢) the
modified Bessel function of imaginary argument, each of
integer order n. The propagators (1.3) are the general
classical and quantum solutions of (1.1) for V=0. Given
an arbitrary initial lattice state ¢(0), the state at time ¢ is
the vectorial product @(z)=K(¢)@(0).

The random walk solution (1.3a) follows directly from
the differential recursion relation I,(z)=1[1,;(2)
+1,_,(z)]. In vectorial form

W'(z)=QW(z), (1.4a)

where W(z) is an infinite vector with components
W,=1,(z). From (1.4a), we have the matrix generating
function [exp(Q¢ )]y, =I; —,(¢), and (1.3a) follows. Prob-
ability conservation ¥ - . Ko;(t)=1 is guaranteed by
e - _ I (z)=1.

In the quantum case (1.3b), the analogous relations are
Jp(z2)=4[J, _(2)—J, +1(2)], or, defining the vector
Y,=J,(z),

Y'(z2)=Q*Y(z2) . (1.4b)

Quantum probability conservation is enforced by the uni-
tarity condition KEK(,:I, which follows from the Bessel
sum $2__ Ji(z)=1. In (1.4b),

1
*— _

the generator of ordinary Bessel functions via
[exp(Q* ) ]in =T, 4 (2).
In the presence of an interaction V, the symmetric ran-

dom walk generated by (1.3a) is desymmetrized. In gen-

2209

eral, the perturbed propagator incorporates the generator

R,(p)=e[Q~(172Q* 1)t | (1.6)

in which Q in (1.3a) is replaced by the transition matrix

Q—(1-2p)Q*=

(1.7

of the doubly infinite, nonsymmetric random walk with
step probabilities (p,1—p). In the continuum limit,
(1.3a) becomes the d =1 heat propagator denoted by

o ~(x—p7/2u

1.
V2t (1.8)

Go(x —y;t)=

The argument to follow also uses the free-particle energy
Green’s function

—li—jlu

I?Oij(k)zfowKOij(t)e_ktdtz 2 , (1.9)

sinhu
where coshu =k + 1.
II. UNIFORM FIELD

For the constant field case, take the potential

V= —AZ, with interaction matrix

2.1

With the choice of interaction (2.1), the Schrédinger
equation $=(Q—I+AZ)p may be interpreted as describ-
ing a particle moving in a left-directed, homogeneous
field under the influence of the periodic potential created
by the lattice. In the continuum limit, it is known that
the constant-field propagator factorizes into a free-
particle contribution and a field dependent phase factor
that can be interpreted as playing the role of a gauge
transformation [9]. Here, we will derive a disentangled
expression for K,=exp(Q—I+AZ)t that exhibits an
analogous factorization on the lattice. It will be shown
that with this factorization the external field is encoded
in the propagator as a pair of identical hyperbolic rota-
tions, exp[AZt /2], operating on a (1+1) lattice defined
by all possible initial and final positions.

The point of the calculation is to evaluate
exp[(AZ+Q)t] in terms of a product of exponential
operators involving Z and Q alone. The final result can
be derived in two ways: (i) make the strong coupling
Lyapunov transformation K'=e _“ZKZ, eliminate the in-
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teraction term AZ from the lattice Hamiltonian
H=Q—I+AZ, integrate the time ordered product, and
obtain a closed form for the resulting matrix sum, (ii) use
the Lie algebraic properties of H to express K, as a prod-
uct of exponential operators with coefficients f;(¢), and
fix the f;(¢) by using the lattice Schrodinger equation
(1.1). In parallel with Lie algebraic calculations of path
integrals [10], method (ii) is used in this section.

The operators [Q,Z] in K, generate the Lie algebra
iso(1,1), which generates in turn the group ISO(1,1) of
translations and rotations in the pseudo-Euclidean plane
[11]. The iso(1,1) structures emerges if one commutes
(1.2) and (2.1) and continues to closure, obtaining the
commutation relations

[Q,Z]=Q*[Q*Z]=Q,[Q,Q*]=0. 2.2)

The finiteness of the algebra (2.2) allows a closed form
solution for the propagator K,. Let the evolution matrix
M of an infinite linear system V=MY be a linear com-
bination of generators {G;} of a finite Lie algebra .L.
Then it is known that the fundamental matrix
K=exp(M¢) that embodies the general solution of
V=MV may be expressed as a finite product
K=T]J;exp[f;(¢)G;]. The scalar coefficients f;(¢) in gen-
eral satisfy a set of coupled nonlinear differential equa-
tions whose structure is fixed by the commutation rela-
tions of the G; [12].

Factorization of K(?) succeeds when the Hamiltonian
generates a finite Lie algebra such as (2.2) because the
Baker-Hausdorff expansions implicit in exp[(Q—I—V)¢]
then terminate. In particular, the commutation relations
(2.2) imply

e “M1/2Qet/2=cosh(At /2)Q+sinh(At /2)Q* ,  (2.3a)

efZe =7+ 7Q* , (2.3b)

and a further pair of relations in which Q and Q* are in-
terchanged. For the special case f =1/A, we have

(Q+AZ)eQ A =2e27 | (2.3¢)

so that (eQ'/%),, =(—1%""J,_,(1/A) is the nth
Schrédinger eigenvector, with eigenvalue E, =An.
For an easy transition to the continuum case it is help-

ful to order the exponential operators in the constant-
field propagator as

K, =e 'eMt/2f(0QeAZL/2 (2.4)

where the function f(¢) remains to be determined. The
symmetric placement of Z in (2.4) and the parametriza-
tion At/2 are chosen to match the symmetric factor

Liz) ~ e’ i (—1)*
"'Rezw V27z k=0(2z)"k!

(n2=1)n2=3) - [n?—(2k —1)2/4] .
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exp[At(x +x')/2] in the Feynman constant-field propa-
gator for the continuum [13]. The generator Q* is not in-
cluded in (2.4) because exp(Q*t) is a matrix of oscillatory
Bessel functions J,(¢), and given a constant field, sym-
metric ordering, and imaginary time, one expects no os-
cillatory factors in K.

The ansatz (2.4) is readily checked by solving for the
function f(¢). Use (2.3a), (2.3b), and (2.4) to obtain the
time derivative

K,=[AZ—I+g,(NQ+g,(NQ*IK, , (2.5)
where
g1(2)=f(t)cosh(At /2)— LAf(t)sinh(At /2) , (2.6a)
g,(1)=—f(t)sinh(Az /2)+ LA f(t)cosh(At /2) . (2.6b)

From (2.5) and (1.1), K, is the correct lattice propagator
if f(¢) is such that g,(¢)=1 and g,(#)=0. From (2.6),
these conditions are satisfied  uniquely by
f(t)=(2/A)sinh(At /2). Accordingly, the constant-field
lattice propagator takes the form

K= MK %sinh(}ut 12) exzuz}ij
— —tAi+j2y | sinh(Az/2)
e ‘e Lo\ = m %) 2.7)

The nonlinear time transformation ¢—(2/A)sinh(Az /2)
in the argument of the free-particle propagator in (2.7)
arises from the bidirectional random walk incorporated
in H=Q—I+AZ when one uses the transform
exp(—AtZ)H exp(AtZ) to eliminate the interaction term
AZ. An analogous nonlinear time transformation occurs
in random sequential adsorption (RSA), where the analog
of a random walk in a uniform lattice field is random di-
mer filling of a d =1 lattice in the cumulative probability
representation [14]. In the RSA process the underlying
space is semi-infinite, the stochastic process is unidirec-
tional, and the associated nonlinear time transformation
is t—e "’ An application of (2.7) in its real-time quan-
tum form follows below.

Continuum limit. It is straightforward to derive the
continuum propagator from (2.7) by making the replace-
ments A—AA3 1 —t/A2, (i,j)——»(x,x’)/Az, and comput-
ing terms that survive for A—0. Observe first that the
argument of the exponential factor in (2.7) is
O(A% in the lattice spacing and so gives directly
exp[At(x+x')/2]. To evaluate the Bessel function
I _o/al(2/AA%)sinh(ALL /2)) for A—0, we require the
standard asymptotic result

(2.8)
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For this application z >>n >>1, and we have the Gauss-
ian limit e %I,(z)~[27z] %exp(—n%/2z), where
n=(x—x')/A and z=t/A*+A*3/24+0(A?). To
O(A%), (2.7) and (2.8) then give, omitting an overall nor-
malization factor A,

lim(K,),- A
A0 z/x'"/A,x/

At(x+x') | A%3
2 24

=Gy(x —x';t)exp » (2.9

which matches the Feynman quantum propagator for
t— —it. Analogous arguments based on iso(1,k) may be
helpful in characterizing the dynamics of fully discretized
(1+k) lattices [15].

Dynamics on the quantum lattice: Wannier-Stark lo-
calization. From (2.7) the uniform-field quantum lattice
propagator is

sin(A/2)

k A/2

zkj( —it )=ene —x}»t(k+j)/2etfr(k —j)/ZJk _;

(2.10)

Equation (2.10) gives the exact general solution of the
discrete lattice variant of the Wannier-Stark problem in
which an electron moves in a periodic potential under the
additional influence of an external homogeneous electric
field [16]. From (2.3c), the energy spectrum implicit in

(2.10) is the well-known Stark ladder
E,=An, (2.11a)

and we may choose phase factors such that the (normal-
ized) lattice eigenvectors take the Toeplitz form

@i =Jd, _(1/A) . (2.11b)

Relations (2.11) also follow from the recursion relation

for cylinder functions
zQY(z)=ZY(z) (2.12)

[cf. the definition preceding (1.4b)] or from the require-
ment that the eigenvectors and spectrum of the infinite
linear system

(Q+AZ)p"=E,p" (2.13)

be the smooth limit as N — o of the eigenvectors and
spectrum of the finite system with the same form in
which Q and Z are taken to be N X N.

The results (2.11) match those of the exact one-band
calculation for Wannier electrons [17] and also the analo-
gous conclusions from the one-band treatment of the
d =3 perfect crystal in a homogeneous external field [18].
In particular, (2.11b) is the basis for the known result that
a Wannier-Stark particle in ladder state n is localized
about cell n, with a spatial extension of order 1/A.

The exact propagator (2.10) enables us to explore the
time behavior of the Wannier-Stark localization analyti-
cally. To do so, we shall propagate the zero-momentum
lattice wave packet

1
(0)=—F———,
L V2N +1
which corresponds to an initial uniform distribution cen-
tered on lattice site O with spatial width 2N +1 and vari-
ance 1N (N +1). Writing out (¢)=K,4(0), we see that
the nth moment of the probability density vector is

1 S
N 1 kzz—wk dik(t)'(//k(t)

1
T 2N+1

—N=<k=N, (2.14)

X, (t)=

- k+N k+N -
X 2k 3 S T, (2 (z)etP 792,
p=k—Ng=k—N

k=—o
(2.15)

where £=At + and z =sin(At /2)/(A/2). Dropping the
noncontributing imaginary parts, reordering the summa-
tions, and using the symmetry of the summands, (2.15)
becomes

=1 s J2 _
X, (1) AN 1 {nszP(Z)Sn(ZN,p N)
2N _él ©
+ > cos > > Jp(z)JpH(z)[Sn(ZN—l,p+I—N)+S,,(2N—l,p—-N)] , (2.16)
I=1 p=—o
where
K
S,(K,L)= 3 (k+L)". (2.17)

k=0

To evaluate the time behavior of the expected position and spatial extension of the packet, we first carry out the sums

S{(K,L)=(K+1XK/2+L),

S,(K,L)=(K+1)[L(K+L)+iK(2K+1)] .
Using (2.18), (2.16) gives

(2.18a)

(2.18b)
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=S pl2)+ s|& 2.1
X, (1) %pJp(z) 2N+1 > ] _2 pJ,(2)J, (2.19a)
0 2
XO=INN+D+ 5 pIia)+522— 3 N1+ Deos S P, (20, 1(2) . (2.19b)
p=—o = p=—w
[
The identities cos(§) = —cos(At) and cos(£/2) L
= —sin?(At) and the Bessel moments following from the H= glanJ' —I+AZ, (2.23)
Graf addition theorem [19], /
- where the a; are real coefficients such that 3a;=1, and
S (2,4, (2)=8,0, (2.20a)  Q; is the Toeplitz matrix with 1 on the jth super- and
p=— subdiagonals and zeros everywhere else. Then the propa-
o z gator
> pJp(z)Jp+n(Z)=E[8n1+8n,—1] , (2.200b)
P—w—w , eite —iMZ/2exp E QJSll’l(])\.t /2) le —iAtZ/2 (2.24)
3 Py (2,42 = 2 [8,,+28,0+5,, 5] MiE
p=—o solves the discrete lattice problem equivalent to the
_Zrs _& (2.200) one-band continuum problem with a periodic
2 (8n1=8n—1], -=ve potential characterized by the dispersion relation
hen g E(k)=3F_,a;cos(jkA) (cf. [17])). In this case, the un-
then give derlying Lie algebra is the L-fold direct sum
X.(5)=— 2N 1—cos(At) (2.21a) iso(1,l)@iso(1,1)® - - - @iso(1,1). The spectrum remains
= IN+1 A ’ ~la the Stark ladder (2.11a). Further generalization to two-
AN?—1 band systems in which odd and even lattice sites have
Xz(t)=%N( N+1D—X( t)+—-———X%(t) different interaction energies requires consideration of
infinite-dimensional Lie algebras.
s 2
4 s21n (At/2) (2.21b)
A“(2N+1) III. 8-FUNCTION INTERACTION

If we fix A and drop terms of O(1/N), the variance of the
distribution becomes

X,()—=X1(1)=X,(0)—X,(¢) . (2.21c)
By inspection of (2.21a), the limits of small ¢t and small
coupling A, as well as the continuum limit, all yield the
classical path X,=—At2/2 for sufficiently large N.
Equations (2.21a) and (2.21c) show that the wave packet
behaves as a “breather”; its position and spatial extension
oscillate with equal phase and amplitude. The motion is
increasingly localized as the field strength increases. On
differentiating (2.21a) one obtains an expected velocity
proportional to sin(Az), consistent with the known result
that Wannier-Stark particles carry no current. On
differentiating (2.21a) twice, the equation of motion

2N

— 2.22
2N+1 222

follows, showing that the Wannier-Stark wave packet
performs classical motion subject to the combined effects
of the imposed uniform field and the induced harmonic
response, —A%X,, resulting from the periodicity of the
lattice.

These results generalize easily to systems in which an
arbitrary number of finite size hops is allowed. In partic-
ular, consider the Hamiltonian

For the discrete 8-function potential, take V4= —A8,
where

, (3.1)

and the subscript S distinguishes the Schrodinger field V¢
from the Smoluchowski-Fokker-Planck field V intro-
duced below. The propagation problem with the field
— A8 can be interpreted either as a discrete version of the
quantum dynamics problem for a particle moving in a
periodic potential under the additional influence of a &
function at position O, or as a classical-stochastic problem
in which the 8-function field is the zero-range image of an
extended, as yet unspecified lattice potential V; under a
Lyapunov transformation of the associated classical sys-
tem. The classical case is discussed here. It will be
shown that the implied discrete-time evolution matrix
generates a Markov process incorporating two nonsym-
metric random walks on the right and left half axes, cou-
pled at cell O by a partly reflecting, partly transmitting,
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sticky barrier. :
In general, the imaginary-time lattice Schrédinger
equation

K=(Q—I—-V K (3.2)

does not define a physically feasible process because prob-
ability is not conserved in the presence of a nontrivial po-
tential Vg. However, by analogy with the relation be-
tween the imaginary-time continuum Schrédinger equa-
tion and the Smoluchowski equation on the continuum
[7], one can show that probability conservation can be
implemented by imposing the Lyapunov transformation
P=e¢ "PK=UK in (3.2) and fixing Vy by variation of
parameters. Explicitly, under this transformation (3.2)
takes the form

P=(UQU '—I—V)P. (3.3)

From (3.3), a suitable classical field V must be such that
UQU !'-Vy =EM, (3.4)

where the discrete-time piece of the transformed evolu-
tion operator is proportional to a stochastic matrix M,
with 1=M;; 20 and 3;M;;=1. In particular, (3.4) gives

ij —
EM,=—Vg , (3.5a)
(3.5b)

=171
EMiil,t_?Uii Ui:tl,i:tl .

From (3.5) and probability conservation 3;M;; =1, it fol-
lows that 1> — ¥V; /E>0 and

(Q—Vg)u—Enu, (3.6)

a form of the time-independent lattice Schrodinger equa-
tion, where u, =CU,, and C is a normalization constant.
Given that V is real and local, Eq. (3.6) implies that the
diagonal elements of U=-exp(—V) can be identified
with the components of any Schrodinger (lattice) eigen-
function u with consistently signed components u;u; > 0.
For the discrete 8-function field —A8, an appropriate
solution of (3.6) is therefore given by the quantum state
with energy E=V'1+A? and (unnormalized) wave func-
tion

u,=(V1+22—)"
Thus, a feasible Smoluchowski field is the cusp potential
Ve =In(V 1422 =) |n|=—pln| . (3.8)

From (3.5) and (3.7), the Markov matrix in (3.4) takes
the form

(3.7

I-p O p
l1-p 1=2p 1—p ,
j/ 0

(3.9)

2213
where
VvV 2__
p=_1—+}‘_7_‘_ . (3.10)
2V1+A?

From (3.9), we see that the discrete Schrodinger &-
function field is mapped in the Smoluchowski picture to a
discrete-time Markov process. This process comprises a
pair of back to back nonsymmetric random walks cou-
pled at the force center by the rule that a particle at cell 0
moves to the right or left with equal probability p or
sticks in place with probability 1—2p. From (3.9) and
(3.10), in the repulsive (attractive) case A <0 (A>0),
0<p <1 (L <p<1), the coupled walks are both directed
outward (inward). The asymptotic equilibrium state asso-
ciated with (3.9) is given by the doubly infinite probability
vector with components p¥=tanh(p)e 2 Inle,
n=---,—2,—1,0,1,2....

The solution of Kg(2)=(Q—I+A8)K;(?) follows im-
mediately from a general property of the evolution equa-
tion

K=(H,+AT)K , (3.11)

given time-independent (Hy, T) and an interaction matrix
that factorizes as T=W?2. In such a case, the Laplace
transform of (3.11) reads

K=(K, —Aw?)"!
= Ko + 7J~(0WWI~(0 + szowwﬁowwﬁo + e
=K+ AR ,WI-AWK,W) WK, , (3.12)

where Ko=H(K,. The identity matrix in (3.12) refers to
the sublattice defined by the nonzero elements of WK W.
Equation (3.12) applies, e.g., to idempotent interactions
T=T? composed of an arbitrary superposition of equal
strength lattice & functions at different sites and to the os-
cillator sequence T=2Z2%", n=1,2,3,..., of even powers of
the uniform field (2.1). Special cases of (3.12) have been
derived in treating diffusion in the presence of localized
partial traps [5], and a continuum form has recently been
used to obtain the d-function continuum propagators for
d=1,2,3 [20]. A similar approach applicable to a
different class of potentials uses fully summed perturba-
tion series to compute exact propagators for the continu-
um [21].

The configuration space form of (3.12) can be derived
independently by writing K(¢) in Trotter product form.
The starting point is the discrete path integral

K()= lim (Ko(e)eV)V,

where e=t/N. The configuration space evolution opera-
tor follows if one keeps leading order terms in €, so that

K(t)=A;im [Ko(eXI+eW?) ]V,

expands in eW?, takes N — 0, and expresses the result as
a sum over products of convolution integrals, one such
product for each order in eW?2,

In the case at hand, WK W=8K,8 has only one
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nonzero element, and the resulting scalar geometric series
in (3.12) gives the energy Green’s function we seek in the
form

e—u(li{+|j|)

Ry =Ko;+A (3.13)

sinhu (sinhu —A) °
In (3.13), the transform (1.4) and definition coshu =k +1
have been used.

An integral representation for Ky(¢) follows from (3.13)
if we make the replacement

(sinhu —A)7'= [ Te T Rgy (3.14)

and use the tabulated transform [22]

n/2
fDO

I,(Vi2—whe *dr=2
w

t—w —nu —wsinhu

t+tw

sinhu

(3.15)

valid for Re k> 1. Given (3.14) and (3.15), (3.13) yields
the representation

. (il +1jh 72
Ksij(t)=K0ij(t)+7»e“’f0te)‘“ %‘+—Z
XI|1|+|],( t2—u2)du .
(3.16)

An infinite sum over terms with the form of the in-
tegrand in (3.16) appears also in the exact Green’s func-
tion for the second-order, continuum telegraph equation
with a partly reflecting boundary [23]. An open question
is how to relate in detail the underlying physics of the
telegraph equation with partial traps, where the basic
equation is known to incorporate a Markov process in
which the velocity changes sign at Poisson times [24],
with the physics of the combined nonsymmetric lattice
walk and Poisson point process discussed here.

The structure K5 emerges more clearly in the form

KSij(t)=K0ij(t)+7\.e“’fotex“(e'Q'“Q*)0,|,~|+|j|du )

(3.17)
via the matrix generating function
k/2
w-bo*_ < |a—b Vai_p?
e _k=2_w a+b Ik( a _b )Tk . (318)

The matrices T, in (3.18) are the Abelian set of doubly
infinite, Toeplitz shift operators, where k >0 (k <0) la-
bels a Toeplitz matrix T, with 1’s on the kth super- (sub-)
diagonal and zeros elsewhere.

Equations (3.16) and (3.17) show that the lattice propa-
gator shares important features with the corresponding
continuum form [25,26]

Gs(x—y;t)=Gy(x —y;t)

+kf0we"“Go(|x|+|yl+u;t)du . (3.19)
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In both cases the combinatorial coupling Ae** character-
izes the sum over all possible closed loops that begin and
end at the force center. Also, on the lattice and the con-
tinuum, the dependence [|i|+]jl,|x|+|y|] on the final
and initial positions in (3.17) and (3.19) indicates that the
path of the propagating particle is decorrelated each time
it loops through the force center.

There are also properties of Ky specific to the lattice.
In the repulsive case A— — A, a simple transformation of
variables allows the second term on the right in (3.17) to
be written as a probability integral, so that
)2 d
2

F.(1—p)dp .
o,lil+11 9P

KSij(t)=K0ij(t)_ fol {Rt

(3.20)

As anticipated, (3.20) shows that the contribution of the
lattice 8-function field to the propagator incorporates a
nonsymmetric random walk [cf. (1.6)] over a total dis-
tance |i|+|j| from the force center, with step probabili-
ties (p/2,1—p /2). This nonsymmetric walk is averaged
over a Poisson process characterized by the probability
F,(p)=1—e ™ of one or more interactions at the force
center in the time interval from O to pt, with mean arrival
rate A. The integration over p in (3.20) can also be inter-
preted as an average over all possible fractional alloca-
tions of the total time ¢ among the Poisson loops at the
origin and the initial and final random walks from i to O
and O to j, respectively.

Continuum limit. To recover the continuum result,
make the replacements A—AA, t—t/A2% and
(i,j)—(x,x") /A% in (3.16) and again compute terms that
survive for A—0. We have

iin})[Ka(t)_KO(t)]x'/A,x/A

a2 Lt/ 2
=2e t/Af e (x| +1xDu/t]+0(A )I(lx'|+|x

o /A
2A2
x |- 1—=287 14 oA |du ,
A2 2¢2
(3.21)

from which, by (2.8), the continuum result (3.19) follows.
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